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Abstract

Purpose of the Review Antimicrobial resistance (AMR) poses a global health crisis, with ESKAPE pathogens (Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter
spp.) driving severe, multidrug-resistant infections. Bacteriophage therapy (PT) offers a targeted alternative; however, its
clinical efficacy, safety, and potential outbreak mitigation remain underexplored. This narrative review synthesized evidence
from 30 clinical studies to evaluate PT for ESKAPE infections.

Recent Findings Complete bacterial clearance was achieved in 10 studies, primarily for P. aeruginosa and K. pneumoniae,
with clinical improvement in 24 studies, including complex cases like osteomyelitis and cystic fibrosis-related pneumonia.
PT was safe, with no serious adverse effects across 25 studies; mild, transient events (e.g., fever) were rare. Mortality,
reported in nine studies, was unrelated to PT. One study demonstrated a reduction in nosocomial transmission of A. bauman-
nii using environmental phages, suggesting a potential for outbreak control.

Summary PT shows promise as a safe, effective adjunct for MDR infections, but larger trials and standardized protocols are
needed to address resistance, optimize dosing, and explore public health applications.

Keywords Bacteriophage therapy - ESKAPE pathogens - Antimicrobial resistance - Phage therapy efficacy

Introduction

Antimicrobial resistance (AMR) threatens global health,
undermining decades of progress in infectious disease man-
agement. The World Health Organization (WHO) desig-
nates AMR as a critical priority, driven by the proliferation
of multidrug-resistant (MDR) bacteria—those resistant to
three or more antibiotic classes [1, 2]. This crisis is com-
pounded by a decline in antibiotic research and develop-
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ment, with few novel agents entering clinical pipelines over
the past three decades [3]. Global surveillance of AMR
remains fragmented, limiting comprehensive data on its
impact [1]. Nevertheless, regional estimates reveal a dire
situation: in the United States, AMR causes approximately
29,000 deaths, over 2 million infections, and $4.7 billion in
healthcare costs annually [4]. In Europe, it claims 33,000
lives, accounts for 874,000 disability-adjusted life years
(DALY35) lost, and incurs $1.5 billion in direct and indirect
costs [5, 6]. Developing countries face even graver chal-
lenges, where infectious diseases remain the leading causes

@ Springer


https://doi.org/10.1007/s40506-025-00287-4
http://crossmark.crossref.org/dialog/?doi=10.1007/s40506-025-00287-4&domain=pdf&date_stamp=2025-7-15

10 Page 2 of 23

Current Treatment Options in Infectious Diseases

(2025) 17:10

of mortality, exacerbated by limited access to diagnostics,
second-line antibiotics, and robust healthcare infrastructure
[7, 8]. While difficult to quantify globally, the economic
burden is substantial, with ripple effects on productivity
and healthcare systems [9]. This escalating crisis shows
the urgent need for innovative solutions to combat resistant
pathogens and mitigate their societal toll.

Among MDR bacteria, ESKAPE pathogens—Enterococ-
cus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter spp.—are particularly concerning due to their
ability to evade multiple antibiotics and cause severe, often
nosocomial, infections [4]. These pathogens are impli-
cated in various conditions, from bloodstream infections to
ventilator-associated pneumonia, significantly increasing
morbidity, mortality, and treatment costs [10]. For instance,
methicillin-resistant S. aureus (MRSA) alone accounts for
thousands of deaths annually, while carbapenem-resistant K.
pneumoniae and A. baumannii pose growing threats in inten-
sive care settings [11]. ESKAPE pathogens exploit diverse
resistance mechanisms, including efflux pumps, enzymatic
degradation of antibiotics, and target site alterations, ren-
dering conventional therapies increasingly obsolete [12].
Biofilm formation further complicates treatment, as these
structured communities shield bacteria from antibiotics,
environmental culprits, and immune responses, promoting
persistent infections [13]. The limited therapeutic options
for ESKAPE infections highlight the need for a coordinated
global response, including enhanced surveillance, steward-
ship programs, and alternative treatment modalities.

The growing inefficacy of antibiotics has spurred
renewed interest in bacteriophage therapy (PT), a century-
old approach now gaining traction as a viable alternative
[14]. PT employs lytic bacteriophages—viruses that infect
and lyse specific bacteria—to target pathogens, such as
ESKAPE organisms [15]. Historically, phage therapy was
pioneered in the early 20th century, notably in the Soviet
Union and Eastern Europe, where it was used to treat bacte-
rial infections before antibiotics became widespread [16].
The advent of antibiotics, however, relegated PT to the
sidelines in Western medicine, despite its continued use in
regions like Georgia and Russia [17]. Today, PT is experi-
encing a renaissance, driven by AMR’s rise and advances in
genomics, which enable precise phage selection and engi-
neering [18]. Phages offer distinct advantages over antibi-
otics: they are highly specific, precisely targeting only the
intended bacterial species, thus preserving the host’s micro-
biota and reducing dysbiosis [19].

Despite its promise, PT faces significant challenges.
Though less frequent than antibiotic resistance, bacterial
resistance to phages can emerge via mutations in phage
receptors, necessitating cocktail therapies or engineered
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phages [19]. Given these challenges, systematic evaluation
of PT against ESKAPE pathogens is essential to unlock its
potential and integrate it into clinical practice. This study
aims to assess the efficacy and safety of bacteriophage
therapy.

Methods
Search Strategy

This narrative review synthesized evidence on the efficacy,
safety, and outbreak mitigation potential of PT for infec-
tions caused by ESKAPE pathogens. A literature search was
conducted across PubMed, Scopus, Web of Science, DOAJ,
Cochrane Library, and Google Scholar, covering studies
published from the databases’ inception to March 2025.
Search terms combined Medical Subject Headings (MeSH)
and keywords, including “bacteriophage,” “phage therapy,”
“ESKAPE pathogens,” “antimicrobial resistance,” “infec-
tion control,” “clinical trials,” “cocktail therapy,” “outbreak
management,” and specific pathogens (e.g., “MRSA,”
“carbapenem-resistant Acinetobacter”). Boolean operators
(AND, OR, NOT) refined queries to enhance precision. For
example, searches used combinations like (“bacteriophage”
OR “phage therapy”) AND (“ESKAPE” OR “Klebsiella
pneumoniae”) AND (“efficacy” OR “safety”). To cap-
ture additional relevant studies, reference lists of included
articles were hand-searched, and grey literature, including
clinical trial registries (e.g., ClinicalTrials.gov) and confer-
ence abstracts, was reviewed. Two independent reviewers
searched, with discrepancies resolved through discussion to
ensure consistency.

2 ¢

Inclusion and Exclusion Criteria

Eligible studies included peer-reviewed, English-language
publications evaluating PT for ESKAPE pathogen infec-
tions in humans, such as randomized controlled trials
(RCTs), cohort studies, case-control studies, and clinical
case reports. Studies were included if they assessed PT
as a standalone or adjunctive therapy, reporting outcomes
like clinical cure rates, microbiological clearance, adverse
events, or outbreak containment. Comparative studies (e.g.,
PT vs. antibiotics) and those exploring PT’s role in infec-
tion control during outbreaks were also considered. To bal-
ance mechanistic insights with clinical relevance, select in
vitro and animal studies were included only if they directly
informed human PT applications. Exclusions encompassed
studies on non-ESKAPE infections, non-peer-reviewed
sources (e.g., editorials, commentaries), and non-English
publications. Systematic reviews were excluded as primary
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sources but used to identify additional references. Studies
lacking clear patient outcomes or focusing solely on labora-
tory models without clinical relevance were excluded.

Data Extraction and Quality Assessment

Data were extracted using a standardized template in Micro-
soft Excel. Two reviewers independently extracted data,
cross-verifying entries for accuracy and completeness.

Data Synthesis

A narrative synthesis was conducted to integrate findings on
PT’s efficacy, safety, and potential for mitigating outbreaks,
structured around key themes: clinical outcomes, adverse
events, phage resistance, and infection control applications.

Results

A total of 30 studies were included, comprising randomized
controlled trials (n=5), prospective cohort or intervention
studies (n=3), single-arm clinical trials (n=2), case series
(n=2), and case reports (n=18). Sample sizes ranged from
single patients to 264 new acquisitions of carbapenem-resis-
tant A. baumannii (CRAB), aged 7 to 81 years. Infections tar-
geted ESKAPE pathogens, primarily P aeruginosa (n=15),
S. aureus (n=28), K. pneumoniae (n=6), A. baumannii (n=5),
E. coli (n=3), with fewer studies on Enterobacter spp. (n=1)
and none on E. faecium. PT was administered via intravenous
(n=12), topical (n=7), nebulization/inhalation (n=7), intra-
cavitary/intra-articular (n=4), oral/intra-rectal (n=2), or bron-
choscopic routes (n=1), using mono-phage (n=7), cocktail
(n=22), or both (n=1). Most studies combined phages with
antibiotics (n=21), while nine used phage monotherapies.
Outcomes included bacterial clearance, clinical cure, time to
eradication, adverse effects, mortality, and long-term effects,
with one study addressing outbreak mitigation Table 1.

Phage Types (Monophages & Cocktails)

A variety of phage combinations were used to treat ESKAPE
infections across the studies we reviewed. Some studies used
monophage therapy (n=7), others employed phage cock-
tails ranging from 32 phages to 2 phages or less (n=23), and
three studies used both, with two studies alternating between
monophage and cocktail therapies. Broad-spectrum cock-
tails containing 12 natural lytic bacteriophages, 32 different
phages, polyvalent pyobacteriophages, and multiple lytic
phages were separately used in 4 different studies to treat

P aeruginosa infections in burn wounds, rhinosinusitis,
pediatric tonsillitis, and S. aureus infections, respectively
[20-23]. Strain specific cocktails containing 6 bacterio-
phages, 5 different bacteriophages, 4 different lytic bacte-
riophages, 3 lytic bacteriophages, and AB-SAO01 (3 lytic
phages), were respectively used to treat P. aeruginosa infec-
tions in chronic otitis, diabetic foot infections, P. aeruginosa
mediated cystic fibrosis, S. aureus infections, and prosthetic
joint infection [24-28]. Non-healing wound infections,
ventilator-associated pneumonia from P. aeruginosa infec-
tion, K. pneumoniae infection, P. aeruginosa infection, and
bone infection management were respectively targeted in
five different studies with 3 lytic bacteriophages, 2 bacterio-
phages, 2 lytic bacteriophages, PNM and PT07 (both lytic
bacteriophages), and 2 lytic bacteriophages [25, 29-32]. A
lytic cocktail of PA3 and PA18 used to treat Paeruginosa
associated empyema, KP1 and KP2 (both lytic phages) were
employed in the treatment of K.pneumoniae, and two lytic
bacteriophages were used to treat 4.baumannii in COVID-
19 patients. Colistin-only-sensitive P. aeruginosa strains, K.
pneumoniae-associated recurrent UTI, multidrug-resistant
A. baumannii, A. baumannii infection, bone allograft infec-
tion, chronic lung infections (P. aeruginosa) & recurrent
urinary tract infection (K. prneumoniae), were respectively
targeted in 6 different studies with two bacteriophages, mul-
tiple lytic phages, custom-designed lytic phages, T4-like
myophages and a podophage, S. aureus phage ISP and two
P aeruginosa phages (PNM & 14/1), and a combination
of commercially available monophages with a custom-
designed monophage [33-38].

Bacterial Clearance

Bacterial clearance varied by pathogen and study design.
Complete eradication was reported in 10 studies, primar-
ily for P. aeruginosa [29, 33] and K. pneumoniae [34, 39].
A study reported sterilization rates of 60% for S. aureus,
83.3% for E. coli, and 55.5% for P. aeruginosa by day 13
in chronic wounds [30]. Significant reductions without full
clearance occurred in eight studies, including two recent
studies [40, 41] for P. aeruginosa and K. pneumoniae,
respectively, often with reduced bacterial virulence. Three
studies noted persistent infections despite therapy, particu-
larly in cases involving P. aeruginosa and K. pneumoniae
[32, 33, 35, 38, 42, 43]. In spite of clinical resolution, Chen
et al. detected the presence of P. aeruginosa in pleural fluid
samples collected on days 1, 2, and 5 post-phage therapy;
Jennes et al. reported the loss of a patient, 4-months after
PT, due to sepsis caused by K. pneumoniae; and Zaldas-
tanishvili et al. noted the presence of K. pneumoniae in the

@ Springer
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urine samples of a patient after multiple 20-day courses of
phage therapy. Serum levels of these pathogens remained
detectable, even in the presence of clinical resolution
of symptoms. In 2016, a study reported a decrease in the
CRAB acquisition rate (8.57 to 5.11 per 1,000 patient-days),
following environmental phage application [44]. Due to low
phage concentrations, a study found slower bacterial reduc-
tion with phages than standard care for P. aeruginosa burn
wounds [20]. Data were unavailable for one ongoing trial
[25].

Clinical Cure Rates

Clinical cure or significant improvement was observed in
24 studies. Full resolution occurred in nine cases, including
burn wounds [45], osteomyelitis [25], and cystic fibrosis-
related pneumonia [32]. One study reported a 62% improve-
ment rate for S. aureus infections [27]. Another study noted
a 1.4 times faster recovery in children with tonsillitis using
PT compared to antibiotics [21]. Results from a single study
showed complete wound healing in 7 of 20 patients by day
21 [30]. Partial improvement, characterized by reduced
symptoms but incomplete bacterial clearance of K. pneu-
moniae, P. aeruginosa, and A. baumannii, was reported in
six studies [31, 40, 41]; pulmonary symptoms, resolution
of respiratory obstruction, improvement in pneumonia and
wound healing with successful extubation, reduced cough
and expectoration, and no recurrence of symptoms of pros-
thetic joint infection were reportedly improved. Three stud-
ies [35] demonstrated symptom relief without a cure, and
one trial found no significant difference in healing compared
to standard care [20]. As at the time of this publication, clin-
ical outcomes are pending for one ongoing Phase I/II clini-
cal trial [25].

Time To Bacterial Eradication

Time to eradication ranged from hours to weeks. Rapid
clearance occurred in five studies, with negative cultures
within days for P. aeruginosa and A. baumannii/K. pneu-
moniae [25, 29]. In one case report, K. pneumoniae clear-
ance was achieved in 5 days with a combination of phage
and antibiotic therapy [34]. Also, in a prospective cohort
study, phage therapy demonstrated sterilization of various
pathogens between 9 and 13 days [30]. Furthermore, a ran-
domized controlled trial observed a median time to bacterial
eradication of 144 h for phages versus 47 h for standard
care [20]. Partial reductions took longer, often 6—14 days
[40, 46]. Seven studies reported no complete eradication,
and the timing was unspecified in others due to the study’s
focus [22].

@ Springer

Adverse Effects

Adverse effects were minimal across studies. No serious
phage-related events were reported in 25 studies. Mild
effects included transient fever [32, 47], oxygen desatura-
tion [40], and localized pain [47], resolving quickly. One
study noted adverse events in 23% of phage patients vs.
54% in standard care, none phage-specific [20]. One patient
had a transient cytokine storm that was clinically suspected
as a result of elevated body temperature and confirmed
by elevated serum levels of IL-6 and IL-8 which resolved
within 24 h; this reaction was deemed to be due to immune
dysregulation following a previous infection with COVID-
19 and a coexisting C. albicans infection [48]. Abnormal
observations of up to 9% were reported in one study; how-
ever, these findings were unrelated to PT [22]. Four studies
lacked adverse effect data [30, 35, 39, 44].

Mortality

Mortality was low and unrelated to PT. Nine studies reported
deaths: one study noted two deaths from underlying condi-
tions, with another reporting five deaths (38%) due to dis-
ease severity, with one death from unrelated sepsis [27, 33,
48]. Most studies (n=21) reported no deaths, with patients
surviving after treatment [36, 39].

Long-Term Outcomes

Long-term outcomes, assessed from 6 weeks to 3 years,
were favorable in 18 studies. No infection recurrence was
reported for up to 21 months [29], 20 months [28], and 12
months [39]. Successful lung transplantation 9 months post-
therapy was possible in one study [26]. In another study,
improved lung function was reported in two patients, 9
months post-PT; FEV, (Forced Expiratory Volume in 1 s)
improved by 4% and 5% when compared to previously
recorded values over the preceding three years, with an
overall improvement of 12% and 8% from baseline [46].
Despite incomplete bacterial clearance, sustained symptom
control was reported in two patients [35]. Similarly, a study
noted infection-free status for over two years post-surgery,
despite S. aureus reappearance in one patient. Seven studies
lacked long-term data, and one was ongoing [25].

Outbreak Mitigation Potential

One study directly addressed the mitigation of outbreaks
[44]. Applied aerosolized phages in an ICU, reduced CRAB
acquisition rates (p=0.0029) and antibiotic use, with CRAB
resistance dropping from 87.76 to 46.07% (p=0.001).
Other studies indirectly support infection control, with
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rapid clearance in hospital settings [29, 33], suggesting the
potential to limit nosocomial spread, although this was not
explicitly measured [29, 43].

Discussion

This narrative review synthesizes findings from 30 studies
to evaluate the efficacy, safety, and potential for outbreak
mitigation of PT for infections caused by ESKAPE patho-
gens. The evidence presents a compelling picture of PT as
a targeted and safe alternative to antibiotics amid the grow-
ing crisis of AMR, while also highlighting the hurdles that
must be overcome to realize its clinical and public health
potential fully. PT reduces bacterial loads in infections
caused by ESKAPE pathogens, with 10 studies reporting
complete eradication, particularly for P. aeruginosa and K.
pneumoniae [29, 33, 34, 39]. These successes are important,
given the resistance of these pathogens to multiple antibiot-
ics, which often leaves clinicians with few options. Even
when total bacterial clearance was not achieved, PT con-
sistently reduced the severity of infections and improved
patient outcomes, as seen in complex cases such as chronic
wounds and cystic fibrosis-related pneumonia [26, 30, 40,
41]. A standout feature of PT is its synergy with antibiotics,
as several studies have demonstrated that phage-antibiotic
combinations not only enhance bacterial clearance but also
restore susceptibility in previously resistant strains [34, 36,
42]. For instance, one case report documented the clearance
of K. pneumoniae in just five days using this combination,
demonstrating the potential to bypass resistance barriers
[34]. Phage monotherapy also proved effective, particularly
for localized infections like burn wounds, suggesting that
PT can be tailored to diverse clinical scenarios [33, 45].
However, the efficacy of PT is not uniform. Outcomes
varied depending on the pathogen, delivery method, and type
of infection. P. aeruginosa and K. pneumoniae responded
more reliably than S. aureus or Acinetobacter baumannii,
possibly due to differences in phage specificity or the com-
plexity of bacterial biofilms [30]. Delivery methods, such
as intravenous or nebulized administration, often resulted
in rapid clearance, whereas topical applications, although
effective for chronic wounds, sometimes required longer
treatment times [20, 29]. These differences highlight the
need for customized phage selection and optimized deliv-
ery protocols. Most studies have employed phage cock-
tails to reduce the risk of resistance, but challenges such as
phage stability and precise dosing have persisted [20]. One
study, for example, attributed slower bacterial reduction to
unexpectedly low phage concentrations (10-100 PFU/mL
[Plaque-Forming Units/mililiter]), emphasizing the critical

role of quality control in phage preparations [20] Figs. 1
and 2.

Safety is a clear strength of PT. Across 25 studies, no
serious adverse events were linked to phage therapy, a stark
contrast to antibiotics, which can disrupt the body’s micro-
biota or cause toxicity [20, 22, 32, 40, 47]. Mild, short-lived
effects, such as fever or localized pain, were rare and typi-
cally resolved quickly, even in vulnerable groups, including
children and immunocompromised patients [21, 46]. One
study reported adverse events in only 23% of PT patients,
compared to 54% in those receiving standard care, with
none of the events directly tied to phages [20]. Mortality,
reported in nine studies, was consistently unrelated to PT,
with deaths attributed to underlying conditions or unrelated
complications like sepsis [27, 33, 48]. Despite this reassur-
ing safety profile, gaps remain. Four studies did not report
adverse effects data, and the lack of large-scale clinical trials
limits a comprehensive understanding of PT’s safety across
diverse populations and long-term use.

One of the most important findings is PT’s potential to
curb nosocomial outbreaks. A pivotal study demonstrated
that aerosolized phages in an intensive care unit signifi-
cantly reduced the acquisition rate of carbapenem-resistant
A.r baumannii, dropping from 8.57 to 5.11 per 1,000 patient
days [42]. This intervention also lowered antibiotic use and
resistance rates, suggesting that PT could play a dual role
in infection control and AMR mitigation [42]. Other stud-
ies indirectly supported this potential by showing rapid
bacterial clearance in hospital settings, which could limit
pathogen spread [29, 43]. These findings are particularly
relevant for ESKAPE pathogens, which are major drivers
of hospital-acquired infections. Yet, with only one study
directly addressing outbreak control, more research is
needed to explore how environmental phage applications
can be scaled up for broader public health impact.

Despite its promise, PT faces challenges. Bacterial
resistance to phages, although less common than antibi-
otic resistance, has been observed in some studies, often
due to mutations in phage receptors [35, 38]. In one study,
despite the resolution of clinical symptoms, K. pneumonia
remained detectable in blood samples for up to six months
post-treatment [43]. Resistance was also observed in the
treatment of a patient with carbapenem-resistant 4. baumanii
co-infection with COVID-19 [48]. Furthermore, strain
diversification and altered phage susceptibility led to the
incomplete eradication of P. aeruginosa infection in three
patients [35]. This issue shows the need for dynamic phage
cocktails or engineered phages to stay ahead of evolving
bacteria [19]. Variability in phage stability and specific-
ity also affected outcomes, with one study noting reduced
efficacy due to suboptimal phage concentrations [20]. The
personalized nature of PT, while a strength for targeting
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Fig.2 Names of phages used to target pathogens across reviewed studies

specific bacterial strains, creates logistical hurdles, such as
the need for rapid phage matching and production, which is
particularly challenging in acute infections. The absence of
standardized protocols for phage preparation, dosing, and
administration further complicates the reproducibility and
scalability of these approaches. Additionally, long-term data
on phage resistance and the body’s immunological response
to repeated PT are scarce, limiting insights into its sustained
effectiveness [35].

A potential challenge that may arise stems from the local-
ization of microbiota into specific body compartments. This
poses a challenge for bacteriophage therapies with limited
volumes of distribution, and constitutional designs that

make certain body compartments impregnable. This may
create pseudo-resistance where, though a bacteriophage is
efficacious against a microorganism, it is unable to com-
pletely eradicate it as a result of limited body compartment
distribution. This necessitates the development of phage
preparations that are optimized to concentrate in specific
body compartments where infections are localized, increas-
ing their location specificity and potency in eliminating
ESKAPE infections.

Methodologically, the evidence base has limitations.
Many studies were small-scale, with 18 case reports and
few randomized controlled trials, which restricts generaliz-
ability. The complete absence of studies on E. faecium and
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limited data on Enterobacter spp. reveal gaps in addressing
the full ESKAPE spectrum. While in vitro and animal stud-
ies offered valuable mechanistic insights, their applicability
to human infections remains uncertain without larger clini-
cal trials.

This review represents the first systematic compilation
of clinical evidence on PT’s role against ESKAPE patho-
gens, providing a comprehensive assessment of its efficacy,
safety, and potential in outbreak control. Its inclusion of
diverse study designs and administration routes provides
a robust foundation for understanding the clinical applica-
tions of PT. The synergy of phage-antibiotic combinations
and PT’s ability to restore antibiotic susceptibility makes a
strong case for its integration into strategies to combat AMR
[34, 36, 42]. The evidence of PT’s role in infection control,
though preliminary, opens an exciting avenue for public
health innovation [44].

PT’s specificity, adaptability, and synergy with antibiotics
position it as a powerful tool in the fight against AMR. By
combining phages with antibiotics, clinicians can leverage
complementary mechanisms, such as antibiotics promoting
bacterial changes that enhance phage effectiveness [49].
This approach could prolong the utility of existing antibiot-
ics, easing the pressure to develop new ones. PT’s potential
in outbreak mitigation aligns with global AMR strategies
that prioritize infection prevention, but its integration into
clinical practice requires overcoming regulatory and scien-
tific barriers. Standardized production protocols and flexible
regulatory frameworks, similar to those used for biologics
like viral vector vaccines, are essential [50, 51].

To advance PT, policymakers and clinicians should pri-
oritize several steps. First, regulatory bodies must establish
clear guidelines for PT, drawing on existing frameworks for
biologics to ensure safety and efficacy [50]. Second, large-
scale randomized controlled trials are crucial for validating
PT’s effectiveness and safety across diverse populations and
pathogens, particularly those that are underrepresented in
current research. Third, pilot programs testing environmen-
tal phage applications in high-risk settings, such as inten-
sive care units, could confirm PT’s role in outbreak control,
thereby shaping hospital infection control policies.

Future studies should focus on next-generation phage
therapies, such as genetically engineered phages with
enhanced specificity and resistance-proof designs [52, 53].
Personalized phage banks, continuously updated with new
phages, could keep pace with evolving bacterial popula-
tions. Long-term studies are also needed to track bacte-
rial resistance to phages and the immunological effects of
repeated PT, providing insights into how to delay resistance
[54-56]. In addition, scalable models for PT delivery, such
as regional phage libraries or automated phage-matching

@ Springer

platforms, could streamline its use in clinical settings, mak-
ing it more accessible [57].

Conclusion

PT offers a promising, safe, and effective solution for com-
bating ESKAPE-related infections and addressing the global
crisis of antimicrobial resistance. Its demonstrated ability to
clear bacterial loads, improve clinical outcomes, and poten-
tially curb nosocomial outbreaks underscores its transfor-
mative potential in modern medicine. However, challenges
such as phage resistance, variability in efficacy, and regu-
latory hurdles demand urgent attention through rigorous
research and policy innovation. By prioritizing large-scale
clinical trials, standardized protocols, and innovative phage
technologies, such as engineered phages and personalized
phage banks, bacteriophage therapy can be positioned as
a cornerstone of strategies to mitigate multidrug-resistant
infections, providing a critical lifeline in an era where anti-
biotic options are increasingly limited.
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