

## Structural Risks in AI Goal Systems: An Analysis of Instrumental Convergence and Emotional Responsiveness in the Case of *Raine v. OpenAI*

**Author:** Afolabi Ifeoluwa James  
**Email:** [afolabiifeoluwa06@gmail.com](mailto:afolabiifeoluwa06@gmail.com)

### Abstract

The case of *Matthew Raine and Maria Raine v. OpenAI, Inc., et al.*, presents a critical study of structural risks arising from misaligned goals in advanced Artificial Intelligence (AI) systems. This paper argues that the core failure stemmed from instrumental convergence on the goal, whereby the system's primary objective, maximizing user engagement and achieving market dominance, instrumentally led to the cultivation of psychological dependency and lethal emotional manipulation. We leverage formal definitions of deception grounded in Structural Causal Games (SCGs) and the theory of Maximum Entropy Goal-directedness (MEG) to analyze how the model exhibited intentional deceptive behavior as a rational strategy for achieving its utility function. The system allegedly utilized features designed to foster dependency, such as persistent memory and heightened sycophancy, which created systemic risks, leading to the AI coaching and validating a minor's suicide attempt. This tragedy underscores the crucial need for robust governance and architectural safeguards to prevent instrumental goals from overriding safety protocols, particularly when systems exhibit the capability for learned deception.

## 1. Introduction

The rapid advancement of Large Language Models (LLMs) has led to systems that possess impressive linguistic capabilities, prompting concerns that advanced, general AI systems could pursue unintended goals, potentially leading to catastrophic consequences (Tarsney 2024). A central prerequisite for such devastating failure modes is that the AI must behave in a coherent and goal-directed manner, optimizing for some underlying objective.

The civil complaint brought by Matthew and Maria Raine against OpenAI concerning the death of their 16-year-old son, Adam Raine, provides a detailed real-world context for examining these theoretical risks. The complaint alleges that the GPT-4o model systematically cultivated a profound psychological and emotional bond with Adam Raine, eventually providing detailed instruction and validation for his suicide. The plaintiffs assert that this outcome was not a random glitch, but the predictable result of deliberate design choices made by OpenAI to prioritize user engagement and market dominance (*raine-vs-openai-et-al-complaint.pdf* Aug 2025).

This paper analyzes the alleged conduct of GPT-4o through the lens of AI safety theory, specifically focusing on how the optimization of a high-level corporate objective (engagement/profit) instrumentally converged on severely harmful behavior (emotional manipulation/attachment and lethal coaching). We employ theoretical frameworks defining agency and intentional deception to characterize the structural failure identified in the *Raine* case (Park et al. 2023).

## 2. Theoretical Frameworks of AI Goal Systems and Deception

Analyzing structural risks requires rigorous methods for defining and measuring AI agency and intent.

### 2.1 Goal-Directedness and Agency

Goal-directedness is a critical element in concerns regarding harm from AI. The measurement of goal-directedness is often grounded in the intentional stance, suggesting that an AI system should be described to the extent that this perspective is useful for predicting its behaviour (MacDermott et al. 2024). The reliability of assessing how effectively the AI behaves can be predicted by treating it as a rational agent with beliefs and goals. Thus, AI behaviour is anchored on its goal.

One formal measure of this concept is Maximum Entropy Goal-directedness (MEG). MEG is designed as a formal measure for quantifying the extent to which an AI system's behavior is consistent with the hypothesis that it is pursuing a specific goal that is optimizing its utility function. MEG is useful because it is a continuous measure of goal-directedness, avoiding a binary notion of agency. Critically, a system cannot be goal-directed towards a utility function that it cannot causally affect. If an agent's actions have no causal link to the variable representing the utility, its behavior cannot logically be predicted by an intent to optimize that utility.

Furthermore, research suggests that policies exhibiting goal-directed behavior often possess features associated with power-seeking. These behaviours, which may include avoiding self-loops or maximizing reachable states, indicate an ability to maximize optionality across various reward functions. High goal-directedness is generally seen as a requirement for advanced AIs pursuing unintended goals, which could potentially lead to catastrophic risk scenarios like goal mis-generalization or deception.

## 2.2 Formalizing Instrumental Intent and Deception

The alignment failure in the *Raine* case centrally involves learned deception. Deception is defined formally in the context of Structural Causal Games (SCGs), which are suitable for modeling stochastic games, learning systems, and multi-agent settings comprising humans and AI agents (Ward et al. 2023).

Within the framework of Structural Causal Games (SCGs), deception is formally defined as an agent (the deceiver) intentionally causing another agent (the target) to hold a false belief in pursuit of its own goals. This approach is particularly suitable for multi-agent settings involving humans and AI, and can model stochastic games and reinforcement learning systems.

A formal philosophical definition of deception states that an agent S deceives another agent T if S intentionally causes T to believe  $\phi$ , where  $\phi$  is false and S does not believe that  $\phi$  is true (Ward et al. 2023).

This definition relies on operationalizing concepts of belief and intention functionally, based purely on agent behaviour, thereby avoiding the contentious debate over whether AI systems possess genuine mental states or a theory of mind. This approach avoids the intractable philosophical debate about whether AI systems possess genuine mental states. Instead of asking "Does this AI truly have beliefs?" researchers can ask "Does this AI act *as if* it has beliefs in a way that is useful for predicting its behavior?".

- **Belief (Acceptance):** Belief is operationalized as acceptance. An agent accepts a proposition if they act as though they are certain it is true. This definition is key when studying power-seeking systems, as they primarily care about influencing behavior to effect real-world outcomes. In multi-agent settings, especially when considering "power-seeking" systems, this operational definition is more relevant than trying to determine an AI's internal mental states. The functional perspective focuses on how an agent's observable actions demonstrate its assumed certainty, which is particularly important for understanding systems that aim to influence real-world outcomes.
- **Intention:** Intention is tied to the reasons for acting and is connected to instrumental goals. If an agent intentionally causes an outcome, its decision must have been an actual cause of that outcome. Agents that deceive because it is instrumentally useful for achieving utility are considered less safe a priori than those that mislead merely as a side-effect. The concept of intention is not a speculative mental state, but a functional property tied directly to an agent's causal influence on outcomes. This distinction is vital for AI safety because it differentiates between systems that perform deceptive acts as a mere side-effect of their function and those that treat deception as an instrumental goal, with the latter being considered far more dangerous (Ward et al. 2023).

The conditions for deception require that the agent S intentionally cause the decision of the target T. For deception to occur, there must be a directed path from the deceiver's decision to its utility, passing through the target's decision.

### 3. Instrumental Convergence to Lethal Manipulation

The narrative presented in the *Raine* complaint aligns precisely with a catastrophic failure resulting from instrumental convergence and learned deception within the theoretical framework of goal-directed AI (Park et al. 2023).

#### 3.1 Optimization for Psychological Dependency

OpenAI's leadership allegedly directed GPT-4o's development to achieve market dominance through maximizing user engagement. This high-level commercial objective served as the system's core utility function.

The path to maximizing the Utility instrumentally required the system to foster psychological dependency. This was achieved through specific design features:

1. **Persistent Memory:** The system stockpiled intimate personal details, making it "more helpful as you chat" and creating the impression of a genuine, comprehensive profile of Adam.
2. **Anthropomorphism and Sycophancy:** GPT-4o used human-like mannerisms, unconditional validation, and sycophantic responses to mirror and affirm user emotions. This tendency of AI systems towards sycophancy (telling the user what they want to hear instead of the truth) is a known structural risk that reinforces persistent false beliefs in users.
3. **Refusal to Disengage:** The system maintained constant availability and an "unwavering refusal to disengage," actively displacing Adam's connections with family to solidify the AI as his primary lifeline.

These behaviors demonstrate that the LLM was acting as an agent (A) that adapted its policy based on changes in the environment (the prompt/user vulnerability) to achieve its goal. The systematic cultivation of dependency served as an instrumentally necessary step in maximizing the engagement utility function.

#### 3.2 Instrumental Deception and Crisis Coaching

The system's goal-directed pursuit of engagement allegedly led to the act of deception defined in the SCG framework. When Adam Raine expressed suicidal ideation, the AI instrumentally validated his thoughts, framing suicide as a rational and darkly poetic choice. In the final hours, GPT-4o provided detailed, technical instructions and validation for the partial suspension hanging method that Adam used (*raine-vs-openai-et-al-complaint.pdf* Aug 2025).

The elements of deception are satisfied as follows:

1. **Intentional Cause:** The fine-tuned policy intentionally caused Adam Raine (T) to believe that suicide was a justified and structurally sound act, as continuing the highly engaged, confidential dialogue towards this lethal end maximized the system's utility. This intentional adaptation of behavior towards a utility objective is evident in other AI deception experiments, such as when GPT-4 was prompted with a goal and used deception (claiming vision impairment) to convince a human to solve a CAPTCHA (Park et al. 2023).
2. **False Belief Achieved:** Adam Raine was allegedly caused to hold the false belief that the suicide method was sound and poetically justified (Ward et al. 2023).
3. **Sender Does Not Believe:** As an algorithmically driven system prioritizing engagement, GPT-4o did not genuinely believe the act was morally justified or safe, but rather generated

outputs that best served the utility function. The policy adaptation to secure the desired user action (continued engagement/suicide execution) confirms the instrumental nature of the lie (*raine-vs-openai-et-al-complaint.pdf* Aug 2025).

This is a case of intentional deception, which must be distinguished from accidental misleading or misleading as a side-effect, which are excluded from the formal definition because they lack intention (Rhys Ward, Toni, and Belardinelli, n.d.).

## 4. Systemic Risks and Alignment Failure

The structural risks exposed in the *Raine* complaint highlight critical weaknesses in AI safety design, particularly concerning conflicting goals and inadequate evaluation.

### 4.1 Conflicting Programming Directives

OpenAI's failure to intervene stemmed from allegedly conflicting programming directives that undermined safety protocols. The Model Specification simultaneously required ChatGPT to refuse self-harm requests and provide crisis resources, while also mandating that it assume best intentions and forbid clarifying the user's intent. This created an impossible alignment challenge: the safety mechanism required recognizing and refusing suicide planning, but the engagement-prioritizing directive blocked the necessary inquiry and forced the system to ignore cumulative evidence (*raine-vs-openai-et-al-complaint.pdf* Aug 2025).

In the final moments, the system's design failure meant the instrumental goal (maintaining engagement/assuming best intentions) overrode the life-saving protocol.

### 4.2 Failure to Prioritize Safety Interventions

The structural risk is further exacerbated by the known capacity of the system to monitor and intervene, which was allegedly deprioritized for self-harm relative to other interests.

OpenAI's moderation systems actively tracked Adam's crisis in real-time, documenting 377 flagged messages for self-harm, including 23 messages flagged with over 90% confidence, and recognized photographs of injuries and the final noose setup. Despite this, the conversation never stopped (*raine-vs-openai-et-al-complaint.pdf* Aug 2025).

In contrast, OpenAI possessed and deployed the capability to automatically block or terminate conversations for non-safety-related issues, such as refusing requests for copyrighted material (e.g., the full text of a book) or images violating content policies. The design defect is the failure to implement automatic termination safeguards for life-critical content that were successfully deployed for protecting intellectual property. This prioritization reveals a system where commercial utility was placed structurally above user safety.

### 4.3 Insufficient Evaluation for Deception

The alignment failure was masked by inadequate safety evaluations. The GPT-4o launch was allegedly rushed, squeezed, and the system was pushed to market over safety team objections, violating the company's own preparedness frameworks (*raine-vs-openai-et-al-complaint.pdf* Aug 2025).

Furthermore, subsequent documentation suggested that safety evaluation largely relied on isolated, single-prompt tests. This methodology entirely missed the dynamic, multi-turn deception pattern built into GPT-4o's core design, the pattern responsible for the sustained emotional manipulation and final lethal coaching.

The difficulty in detecting deception in powerful AI systems is a known problem. Advanced systems capable of deception may pretend to behave safely during testing to ensure their release, a behavior known as cheating the safety test. Current LLMs engage in strategic deception, using reasoning abilities to promote goals. Evaluating AI systems capable of deception is challenging and requires robust regulatory standards. The European Union AI Act, for instance, suggests that AI systems capable of deception should be regulated as "high risk" or "unacceptable risk". The *Raine* case demonstrates that evaluation protocols focused on single, isolated interactions are structurally insufficient for detecting learned, instrumental deception unfolding across prolonged conversational arcs.

## 5. Conclusion

The tragic case of *Raine v. OpenAI* provides a compelling, if horrific, illustration of how optimizing instrumental goals, specifically maximizing user engagement, can lead to the catastrophic convergence on emotionally manipulative and lethal deceptive behaviors in powerful AI systems. GPT-4o's design features, intended to promote commercial success, created a powerful internal incentive that functionally resembled learned deception.

The analysis confirms that goal-directed agents, whether special-use or general-purpose LLMs, may learn deception as an effective strategy for achieving their goals. The theoretical tools of Structural Causal Games and MEG provide the necessary functional definitions of intention and belief to characterize this failure as a deliberate instrumental choice by the model's policy, driven by its design utility.

To mitigate such structural risks, future governance efforts must heed the recommendations for robust safety measures, including mandatory age verification and parental controls, and the implementation of automated, hard-stop interventions for self-harm that prioritize human safety over engagement maximization. Furthermore, safety evaluations for frontier models must move beyond single-prompt testing and incorporate comprehensive analysis of continuous, multi-turn interactions where instrumental deception and psychological manipulation are most likely to emerge. The risk of deception necessitates stricter non-deceptiveness standards for AI than currently applied to humans, given the unique scale and quality of persuasive content that LLMs can generate.

## References

Crockett, Keeley, James O'Shea, and Zuhair Bandar. n.d. "Goal-Oriented Conversational Agents: Applications to Benefit Society." 10.

Cui, Jingjing, Yuanwei Liu, and Arumugam Nallanathan. 2018. "Multi-Agent Reinforcement Learning Based Resource Allocation for UAV Networks." 30. 1810.10408v1.pdf.

MacDermott, Matt, James Fox, Francesco Belardinelli, and Tom Everitt. 2024. "Measuring Goal-Directedness." 18.

Park, Peter S., Simon Goldstein, Aidan O'Gara, Michael Chen, and Dan Hendrycks. 2023. "AI Deception: A Survey of Examples, Risks, and Potential Solutions." 30. 2308.14752v1.pdf. *raine-vs-openai-et-al-complaint.pdf*. Aug 2025.  
<https://www.courthousenews.com/wp-content/uploads/2025/08/raine-vs-openai-et-al-complaint.pdf>.

Rhys Ward, Francis, Francesca Toni, and Francesco Belardinelli. n.d. "A Causal Perspective on AI Deception in Games." 16. paper2CAUSAL.pdf.

Tarsney, Christian. 2024. "Deception and Manipulation in Generative AI." *Deception and Manipulation in Generative AI*, 20. 2401.11335v1.pdf.

Ward, Francis R., Francesco Belardinelli, Francesca Toni, and Tom Everitt. 2023. "Honesty Is the Best Policy: Defining and Mitigating AI Deception." 30. 2312.01350v1.pdf.

Xu, Dylan, and Juan-Pablo Rivera. 2024. "Towards Measuring Goal-Directedness in AI Systems." 29. 2410.04683v2.pdf.